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TABLE 1.—STARC-ABL SUBSYSTEM SENSOR MEASUREMENTS 

Subsystem Sensed parameter 
Standard 
deviation, 

percent 

Turbofans 

N3 Core speed 0.0477 
P13 Bypass duct total pressure 0.1671 
P25 LPC exit total pressure 0.1205 
T25 LPC exit total temperature 0.0306 
Ps3 HPC exit static pressure 0.0620 
T3 HPC exit total temperature 0.0292 
T48 Exhaust gas temperature 0.0271 
Wf Fuel flow 0.4687 

Electrical 
Power 
Systems 

Qturb Turbofan low pressure shaft torque 0.0984 
Igen Generator current 0.0145 
Ibus Bus current 0.0147 
Imot Motor current 0.0149 

Tailfan 
Qtail Tailfan shaft torque 0.0486 
P5 Exit total pressure 0.1732 
T5 Exit total temperature 0.0430 

The sensor measurements acquired from each STARC-ABL subsystem and their standard deviations 
are shown in Table 1 and the 27×27 sensor measurement covariance matrix, R, is shown in Figure 5. 
Portions of the R matrix are color shaded to denote sensor measurements acquired from different sections 
of the STARC-ABL architecture. Turbofan sensor measurement covariance is shown in green, electrical 
power systems sensor measurement covariance is shown in yellow, and the tailfan sensor measurement 
covariance is shown in blue. It is assumed that no correlation exists between any of the 30 sensor 
measurements, and thus R is a diagonal matrix.  

The STARC-ABL health parameters and their standard deviation are shown in Table 2 and the 
30×30 health parameter covariance matrix, P, is shown in Figure 6. Color shading is once again provided 
to highlight different portions of the architecture. Historical data on aircraft engine performance 
deterioration levels provided in References 12 and 13 indicates health parameter values ranging from 
approximately 1 to 10 percent, dependent on engine module. For the simulation study presented in this 
paper, each turbofan and tailfan health parameter was arbitrarily assumed to have a standard deviation of 
2.5 percent and a variance of 6.25 percent squared. Additionally, the flow capacity and efficiency health 
parameter pairs within an individual turbomachinery module are assumed to exhibit degradation in a 
coupled fashion. Fan and compressor module flow capacity and efficiency health parameters have a 
covariance of 3.125 percent squared while turbine module flow capacity and efficiency health parameters 
have a covariance of –3.125 percent squared. The turbine efficiency to turbine flow capacity covariance is 
chosen to be negative as turbine efficiency tends to decrease with degradation while turbine flow capacity 
tends to increase with degradation. The latter is due to increased clearances and fouling requiring more 
airflow through the turbine to produce the same level of work. Conversely, all fan and compressor health 
parameters generally tend to decrease with increased degradation and thus their covariance is positive. 
Electrical power system components are assumed to experience relatively limited levels of health 
parameter variation as they are not subjected to the same fouling and erosion degradation mechanisms 
that turbomachinery hardware is.  

For this study it is arbitrarily assumed that electrical power systems health parameters have a standard 
deviation of 0.1 percent and a variance of 0.01 percent squared. Furthermore, it is assumed that no 
covariance exists between electrical power system component health parameters.  
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Figure 5.—Sensor Measurement Covariance Matrix, R. 
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TABLE 2.—STARC-ABL SUBSYSTEM HEALTH PARAMETERS 

Sub-system Health parameter 
Standard 
deviation, 

percent 

Turbofans 

γFAN Fan Flow Capacity 2.5 
ηFAN Fan Efficiency 2.5 
γLPC LPC Flow Capacity 2.5 
ηLPC LPC Efficiency 2.5 
γHPC HPC Flow Capacity 2.5 
ηHPC HPC Efficiency 2.5 
γHPT HPT Flow Capacity 2.5 
ηHPT HPT Efficiency 2.5 
γLPT LPT Flow Capacity 2.5 
ηLPT LPT Efficiency 2.5 

Electrical 
Power 
Systems 

ηgen Generator Efficiency 0.1 
ηrect Rectifier Efficiency 0.1 
ηinv Inverter Efficiency 0.1 
ηmot Motor Efficiency 0.1 

Tailfan γFAN Tailfan Flow Capacity 2.5 
ηFAN Tailfan Efficiency 2.5 
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